
Theoret. chim. Acta (Berl.) 14, 163--174 (1969) 

On the Use of Strictly Localized Orbitals 
for the Description of a Bonds 

RUDOLF POL~.K 

Institute of Physical Chemistry, Czechoslovak Academy of Sciences, Prague, Czechoslovakia 

Received January 6, 1969 

The paper presents an examination of the possibility of describing the a-electronic system of a 
molecule by means of strictly localized orbitals (SLO's) expressed in a minimum basis set of hybrid 
orbitals. In the first part of the paper the relationship between the basis sets of pure AO's and convenient 
HO's is discussed. Further, a criterion is introduced enabling one to analyse the posibility of using 
the SLO-description for the electronic pairs in a bonds, and a method for the construction of the opti- 
mum SLO's in a given basis of HO's is derived. The general conclusions are illustrated by examples. 

Es wird untersucht, wie welt es m6glich ist, das a-Elektronensystem eines Molekiils mittels streng 
lokalisierter Orbitale zu beschreiben, wobei ein Minimalsatz yon Hybrid-Orbitalen beniitzt wird. 
Im ersten Tell der Arbeit wird der Zusammenhang zwischen den SS.tzen von Basisfunktionen der ur- 
spriinglichen Atom-Orbitale und der geeigneten Hybrid-Orbitale diskutiert. Es wird ein Kriterium 
eingeffihrt, das die Analyse einer M6glichkeit der Beniitzung von streng lokalisierten Orbitalen fiir 
die Beschreibung der Elektronenpaare in a-Bindungen gestattet. Ferner wird eine Methode fiir die 
Herstellung der optimalen streng lokalisierten Orbitale in einer gegebenen Basis von Hybrid-Orbitalen 
abgeleitet. Die allgemeinen Schliisse werden an Beispielen erl~iutert. 

On examine la possibilit6 de la description du syst~me a-616ctronique d'une mol6cule par des 
orbitales strictement localis6es en utilisant une base minimale des orbitales hybrid6es. Dans la premi6re 
partie on discute la relation des bases des orbitales atomiques pures et des orbitales hybrid6es con- 
venables. Ensuite on introduit un crit&e qui permet d'analyser la possibilit6 de l'usage des orbitales 
strictement localis6es pour la description des pairs 61ectroniques dans les liaisons a. On develope 
aussi une m6thode pour la construction des orbitales strictement localis6es optimales darts une base 
donn4e des orbitales hybrid6es. Les conclusions g6n6rales sont illustr6es par des examples. 

t. Introduction 

As ev iden t  f rom the  ana lys i s  o f " a b i n i t i o "  S C F  ca l cu l a t i ons  of  s o m e  molecules ,  
it  is poss ib le  to p e r f o r m  the  t r a n s f o r m a t i o n  of  m o l e c u l a r  o rb i t a l s  desc r ib ing  
" a  e lec t rons"  i n t o  well  loca l ized  o rb i t a l s  [ 1 - 1 1 ]  in  all  cases s tudied.  In  a d d i t i o n  
it  is ev iden t  t ha t :  

a) different  loca l iz ing  p r o c e d u r e s  lead to very s imi la r  resul ts  [ 7 - 9 ] ,  
b) it  is poss ib le  to t r a n s f o r m  even  v i r tua l  o rb i t a l s  i n to  local ized o rb i t a l s  [10] ,  
c) the  m o l e c u l a r  o rb i t a l s  of  some  semiempi r i ca l  c a l cu l a t i ons  can  be t r ans -  

fo rmed  to  local ized o rb i t a l s  r e s e m b l i n g  the  local ized o rb i t a l s  der ived  f rom the 
S C F  ca l cu l a t i ons  [9, 10]. 

F r o m  this  p o i n t  of  view, those  a p p r o x i m a t i v e  a p p r o a c h e s  to  the  so lu t i on  of  
c o m p l i c a t e d  e lec t ron ic  sys tems  are just i f ied,  for wh ich  the  pa i r s  of  e lec t rons  in  
classical  a b o n d s  are  desc r ibed  by  s tr ic t ly  local ized func t ions  [12, 13]. The  just if i -  
c a t i on  of  such  a p p r o a c h e s  was d iscussed  recent ly  [14, 15]. 
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This work will discuss in greater detail the possibility to describe the general 
a-electronic system by means of strictly localized orbitals and will develop a 
method for the construction of these strictly localized orbitals. The results are 
illustrated in examples. 

2. Formulation of the Problem 

In the following discussion let us restrict ourselves to the customary MO 
LCAO scheme. In all considerations only finite sets of normalized one-electron 
space functions are treated, for which we use the notation introduced by Montet, 
Keller and Mayer [16]. According to this notation we shall express the set of 
functions ~b - (4~1 (x), q~z(X) ... q~i(x) ... ~bz(x)) by a matrix d~ the elements of which 
are defined by 

(~4'L,, = 4,~(x), (1) 

where the index l, denoting the number of functions 4~(x) in the set under con- 
sideration, gives the number of columms. Thus zq~ is partly discrete and partly 
continuous matrix with properties analogous to the ordinary matrices with discrete 
indices. 

Let us define the following matrices corresponding to various sets of one- 
electron functions: 

mZ: pure atomic orbitals (AO's) e.g. Slater-type orbitals (STO's) 
jp:  hybrid orbitals (HO's) 
,lp: molecular orbitals (MO's) diagonalizing the one-electron Hamiltonian of 

the molecular problem. The matrix is composed of two matrices ,,g, and 
,,ap, corresponding to the ground state orbitals and virtual orbitals re- 
spectively, n = n' + n". 

,1: localized orbitals (LO's), which, analogously to jp, form two matrices , , i  
and ,,,i, for which it holds 

. , i = . , r u ' ,  . . i = . . v v " ,  (2) 

where U' and U" denote the unitary matrices transforming the MO's into 
the localized orbitals. 
strictly localized orbitals (SLO's), forming two matrices ,,~ and ,,,q which 
do not preserve precisely the separation of the ground state orbitals and 
the virtual orbitals. 

Let us assume that the LO's can be expressed in the basis of the hybrid orbitals 

.z = .~,.~c (3) 

and for the sake of simplicity we shall suppose in the following that a minimal basis 
set of HO's is used for the construction of the LO's. 

Let us note that Eq. (3) need not be satisfied in the case that m (the number 
of AO's) is bigger than n (the number of HO's) and that the corresponding MO's 
are found by the variation process in the basis of AO's. 
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If the LO's in the matrix ,~ are so well localized that their substitution in the 
Slater determinant by SLO's forming the matrix ,q is a good approximation (how 
to judge the justification of goodness of such substitution will be pointed out 
later), then the transition to the basis of the SLO's brings about the essential simpli- 
fication in expressing the first-order density matrix Q and consequently, in the 
calculation of any physical quantity. 

Let ,,t/be the matrix formed by k = (n - n') two-centre orbitals (for the descrip- 
tion of the pairs of electrons in o- bonds) and by l = (n' - k) one-centre orbitals 
(for the description of pairs of electrons in lone pairs) and expressed in the form 

where 
1 

C1 
Cz 

0 

0 

.",C= " 
0 

0 

0 

0 

0 

,,q =,q, y c ,  

2 ... k. . .  n' 

0 ... 0 0 0 . . . 0  

0 ... 0 

C3 0 

C4 0 

0 C2k-1 
0 C2k 0 0 ... 0 

0 0 C2k+l  

0 0 O C2k+2 ... 

0 0 0 0 C,,+k 

(4 a) 

(4 b) 

Then the spinless first-order density matrix [-16] related to the one-determinant 
closed shell function built up from these SLO's is given by the formula, 

= 2 . . ,q ( . , t /+  .,~/)-1 .,r/+ (5) 

where the overlap matrix ,,q+ ,,q between the SLO's is not negligible in general. 
Nevertheless, let us suppose that the off-diagonal elements of this overlap matrix 
are negligibly small. Then one finds for the spatial density matrix the following 
expression: 

n ' + k  

~o(1, 1 ' )= 2- ~, IGI z q,,(1) ~o*(1') 
i = 1  

2k-1 (6) 
+ Y~ [,c,.c?+~ .~oi(1) q~.*,+1(1') 

i=1 

+ C i +  1 �9 C* �9 q:)i+l(1 ) ~p*(l')] [1 - ( -  1)']. 

The simple form (6) for the approximate first-order density matrix of the electron 
system enables a perfect partitioning of molecular quantities into contributions 
corresponding to atoms and bonds within the molecule under consideration. The 
meaning of such partitioning of molecular quantities has been widely discussed 
by Ruedenberg [,17]. In connection with the possibility of using the approximate 
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form of the first-order density matrix (6) there are two problems arising, i.e.: 
1. under what conditions it is possible to take the overlap matrix of the SLO's 
,,t/+ ,a/ as the unit matrix, and 2. how to construct the corresponding SLO's. 

3. On the Possibilities of Constructing Orthonormal SLO's 

a) The problem we are going to solve in this chapter may be stated as follows: 
what condition must be fulfilled by the original basis of pure AO's, in order to 
enable the construction of the orthonormal SLO's in terms of a minimal basis 
set of HO's? 

It was shown by Del Re [14], that by extending the basis of pure AO's, one can 
take proper linear combinations of them to get a limited number of "promoted- 
hybridized" orbitals, fulfilling special conditions. Simultaneously it was stated 
that the relationship of these orbitals to individual observables is as yet an open 
question. However, it is evident that the optimalization of these orbitals in 
regard to a special quantity leads to a deterioration of the results for other quan- 
tities. 

In order to discuss our problem let us suppose that the basis )~ and q~ consist 
of intrinsically orthonormal subsets 

zA ~ (Zl A A q)A ~ A Z,,A) and ((pl A . . . . . .  q~,~) 

respectively, where )~) and q~ denote the i-th AO and i-th HO, respectively, 
centered on the atom A of the molecule. 

Let us look for a transformation matrix T transforming the original basis Z 
into the hybrid basis q~ 

,q~ = ,Z T, (7) 

where the matrix T we assume in a quasi-diagonal form having n B �9 m B blocks, 
(B = A, ..., K). Further, in the matrix 

~S = T + xS T, (8) 

where oS and ~S are overlap matrices corresponding to the basis q~ and)~, respectively, 
there must be as many nonzero elements above the main diagonal as bonds we 
wish to have described with two-centre orbitals. Namely we shall require that the 
element (q~))+ q~}~ is allowed to be different from 0 if the orbitals rp) and ~0~ have to 
form a basis for the description of the electron pair in the a bond between atoms 
A and B. 

Therefore, we will consider a molecule, the symmetry of which corresponds to 
the point group G. 

First of all, let us introduce the concept of equivalent quantities concerning 
the molecule under consideration: we consider those quantities to be equivalent, 
which are members of a set being identical with each other, except for orientation 
and position in space and therefore being transformably mutually into each other 
by the operations of the pertinent symmetry group G. 
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Let us consider a molecule composed of sets of equivalent atoms. Assume 
there are Al atoms in the set A, Bl atoms in the set B etc. and Kl atoms finally, in the 
last set K. Let us suppose that n A hybrid orbitals belong to a chosen atom of the 
set A and that ~nA is the number of equivalent HO's belonging to the type (e A). 
Therefore, it must hold that ~ pn A = n A and that the total number of equivalent 

t~ 
orbitals of the type (c~A) is equal to Al'~nA, which is also the dimension of the 
reducible representation of the group G spanned by the HO's of the type (cA). 
This reducible representation can be decomposed unambigously into correspond- 
ing irreducible representations AY(e, i) spanned by symmetry orbitals, where i 
labels species of the irreducible representation. Let Ak(e, i) be the number of 
irreducible representations Ay(e, i) occuring in the reducible one and A U" the 
matrix, transforming the corresponding HO's to symmetry orbitals of the type (c~A). 

If we introduce the quasi-diagonal matrix U, 

A U~ 0.. .  0 1 

U=  " ' U ~ . (9)  

L '"KU 
then, after some rearrangement of the columns in the matrix ,~p, all symmetry 
orbitals ~q~ of the molecule can be expressed as follows: 

In the matrix iS, 

2q, = c .  ( lO)  

loS= U+~SU, (11) 

which can be quasi-diagonalized due to the orthogonality relations for integrals 
(e.g. [18]), the number of distinct non-zero matrix elements is given by the formula 

where 

k(O 
k=  ~ [k(i)+ 1], 

T 
(12a) 

k(i) = ~ Bk(fl, i). (12b) 
B,p 

k means therefore the number of symmetry independent matrix elements. 
Of course the expression (12) gives generally the number of different matrix ele- 

ments of any totally symmetric operator in respect to the symmetry operations 
of the group G. It is necessary to mention that the accidental equality of integrals 
is not taken into account. 

Let us now estimate the number of parameters p, which are needed for the 
construction of the matrix T. 

Since it is sufficient to know only one of the total number, A l" ~nA, Of equivalent 
orbitals of the type (~A) - -  the others being determined by the symmetry trans- 
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formations - -  the complete number PA of parameters for fixing HO's of all atoms 
in the set A is given by the expression 

PA = mA ~ ~na (13 a) 
~nA 

Thus, for the total number of parameters p in the matrix T that are to be deter- 
mined we have 

P = • PB. (13 b) 
B 

If b designates the number of non-equivalent bonds, then these parameters are 
submitted to r restrictions due to the matrix Eq. (8) and the Eq. (12), so that 

r = k - b (14) 

and the number v of free parameters, which may be chosen in accordance with 
additional criteria (e.g. that of maximum overlap [19-21-1), is 

Therefore, the condition 

v = p -  r .  (15 a) 

V > 0 (15 b) 

indicates whether the basis of orthonormal SLO's in terms of a minimal basis 
set of HO's can be constructed. 

The actual calculation of hybrid functions and thus of the parameters in the 
matrix T requires the solution of the system of equations of a second order as 
follows from Eq. (8). The tediousness and ambiguity of the solution are the weak 
side of the problem. For  the practical calculation of the hybrids adequate for the 
construction of SLO's it is naturally possible to limit the number of restrictions 
since some overlap integrals are negligibly small in the basis of pure AO's and 
it is, for example, possible to respect only the overlap between the neighbouring 
atoms. 

b) Illustrations and discussion. For  illustration let us apply the preceding 
conclusions on the models of molecules Li 2 and LiH. 

1. Example: Li 2 - The six electrons of the molecule Li z, consisting of two 
equivalent atoms of type A, will require two one-centre equivalent SLO's corre- 
sponding to the inner shells and one two-centre SLO corresponding to the bond 
pair for their description. 

Let us denote the basis of HO's q~-(qha, q~2a, qhb, ~02b) where the letters a 
and b distinguish the individual atoms. Further, let the equivalent orbitals qha 
and ~01b describe the electrons in the inner shell of atoms a and b, respectively 
(thus they are directly SLO's) and let the HO's with index 2 form the basis for the 
two-centre SLO (the non-zero overlap is being allowed here only between orbitals 
with the index 2). This condition represents in view of Eq. (4) five symmetry in- 
dependent restrictions (r - -5)  for the HO's. The relation p=pA=mA'2=6 
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fulfils the condition (15), thus the basis of pure AO's with m n = 3 represents the 
basis with the smallest number of functions. 

Let us denote the basis of pure AO's )~()~la , )~2a,  Z3a, )~lb, )~2b, Z3b), e.g. 
(Zl, Z/, Z3)a-----((ls), 2S), (2p~))a where the symbols mean the corresponding SYO's 
and the x-axis is supposed to pass through the atoms [the orbitals (ls) and (2s) 
are orthogonal and were obtained from the original basis of STO's by the Ltiwdin's 
symmetric orthogonalization]. 

As r = 5 and p = 6 there remains one free parameter according to (15). This 
parameter may be chosen from the condition that the HO describing the inner shell 
is spherically symmetric. 

Substituting the actual values of overlap integrals for the internuclear distance 
R = 5.051 a.u. [22] and solving the system of equations following from the matrix 
Eq. (8) we get four solutions for the parameters in the matrix T from which only 
two are physically different. 

If 
(i~0~, ig02)o = ((ls), 2s), (2px)) a [To] i , 

then 

0.989 -0.0017 
[Ta i l=  - 0 . 1 4 5 - 0 . 0 0 9 ]  with 

O~ 1.O00J 
(l~O2a) + l~02b ~- 0.217, 

0.997 0.0711 
ETa]2 = 0.083 -0 .855]  

0 0.5131 
with ( 2 ~ 0 2 a )  + 2q~2b = 0.057. 

(In the quoted results we suppose local coordinate systems on atoms a and b 
to have the xaxis pointing towards the center of gravity of the molecule.) 

2. Example: LiH - We shall describe the four electrons of the LiH molecule 
by means of a one-centre SLO corresponding to the inner shell of the Li atom and 
a two-centre SLO corresponding to the bond pair. 

For the construction of the basis ofHO's  q ) -  ~ n Li Li~ = ~q) , qh,  rP2 J with the appropriate 
orthogonalization properties, where q~i describes the inner shell, the basis of pure 
AO's with dimension 3 is sufficient, )~-(Z n, Li Li Z1 , )~2 )" In this case there does not 
remain any free parameter in the transformation matrix T. For STO's, 
Z - ((ls) n, (ls) Li, (2s)Li), where (s) orbitals situated on the Li atom represent again 
the symmetric orthogonalized orbitals, at the internuclear distance R = 3.015 a.u. 
[22] we obtain the solution: 

i ~ ~ T =  0.993 0.115 with (q~n)+q~i=0.476. 

-0.115 0.993] 

The extension of the basis of pure AO's gives the possibility of constructing 
more flexible hybrids because we are able to estimate certain parameters according 
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to additional criteria. For  example, if we assume: 

((pH q)lLi q~Li)~--- ((ls)H(ls)Li,(2s)Li,(2px)Li) T (16) 

(where the pure AO's are again STO's as defined earlier and the x-axis passes 
through the atoms), the requirements of spherical symmetry of the inner shell and 
maximum value of the overlap integral (gH) + r we obtain a single physically 
different solution, TLi ; 

TLi 

0.993 0.094" 

-0 .115 0.814 

0 0,574 

with (~pn)+ 92Li = 0.708. 

4. The Construction of  Optimum SLO's  

a) In this chapter we shall first define a criterion enabling us to decide whether 
the SLO is well suited for the description of the electronic pair in the given a bond 
of the molecule. Further, we shall derive a direct method for the construction of 
the optimum SLO's in a given basis of HO's. 

The spinless first-order density matrix e related to the one-determinant closed 
shell function [23] has the following important property: 

4~+Q4~= n,  0 < n _ < 2  (17) 

for any normalized orbital qg. For  any occupied orbital n = 2 and n = 0 for any 
orbital which is orthogonal to the manifold of occupied orbitals. The relation (17) 
gives us the possibility to construct the SLO corresponding to a given bond l 
from the condition that the expression 

~/+ Qr/t = nt (18) 

has a maximum. 
Further on, we shall restrict ourselves to the following problem. Let us suppose 

that we have a basis set of HO's which we consider suitable for the construction of 
the SLO's in the molecule studied and that in this basis it is also possible to ex- 
press the MO's, ,~o = ,~p ~,C. With these limitations we then find the optimum two- 
centre SLO describing the electronic pair in the chosen bond I. We may write 

Q = ,~p P,~p+ , (19) 

where P = 2~C ~C +. Due to the Eq. (4) the normalized orbital describing the 
electrons in the chosen bond 1 between atoms A and B is given by 

qz = ,r ~Cz = C 2 t - 1  q)Al-1 + C2lqo~ . (20a) 

Using a more convenient notation 

C2t_ l = q  and C2z=-q'b (20b) 
where 

q = (1 + b 2 + 2 b s )  -1/2 , s -- (~p~l_l) + (r 
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and b is a variable parameter, it is possible to write using Eqs. (18), (19) and (20) 

n I = f l C ~  ~ S P ~ S ~ C  l = q2 [gA q- 2bgAB + b2 g B ] ,  (21) 

where 
+ p 

gA  ~- q~S21-1 q~S2l - I  , 

gB = q~S~lPq~Sz l ,  
+ 

gAB = tpSE lP tpS21-1  

and ~0Si is the i-th column of the matrix oS. 
Extremizing (21) we get two values for b 

_ y +_ ] / y 2  _ 4 x z  (22) 
bl, 2 = 2x 

corresponding to the minimumand to the maximumvalue. The meaning ofthe 
symbols in (22) is as follows: 

X = gAB--  S g B ,  

Y = g  A-- gB, 

Z = s g  A - -  gAB" 

It may be expected that one value of b will be positive, corresponding to the two- 
centre orbital occupied in the ground state. The second value of b will be negative 
and corresponds to the minimum of the projection into the space of the occupied 
functions and belongs to the virtual orbital. 

b) Illustrations and discussion: We shall now show the construction of SLO's 
for ~-electronic bonds in the molecules of acetylene, ethylene and ethane. This 
group of molecules is of interest because the hybrid atomic orbitals of carbon in 
acetylene, ethylene and ethane are of the sp, sp 2, and sp 3 type, respectively, accord- 
ing to the classical point of view. 

It has been shown [9] that the localizing procedure transforms the molecular 
orbitals into well localized orbitals in the case of the SCF calculations 1-24] 
employing precise molecular integrals as well as in the case of the "extended 
Hiickel theory" with Hoffmann's parameterization scheme [25]. The resulting 
localized orbitals for both types of calculations are very similar. This similarity 
shows itself both in numerical values of the coefficients ~C and, above all, in the 
changes of their values when going from acetylene and ethylene to ethane, which 
also manifests itself in the values of dipole moments of the C-H bonds of these three 
molecules [26]. Let us, therefore, consider the ground state of the valence electrons 
of the three molecules in question as being described by means of the one-deter- 
minant closed shell function constructed from the "extended Htickel theory" MO's. 

Let the HO's ,cp be formed by (ls) STO's localized on the nuclei of the hydrogen 
atoms and by (sp k) hybrid orbitals localized on the nuclei of the carbon atoms 
k = 1, 2 and 3 for acetylene, ethylene and ethane, respectively. Again these HO's 
are linear combinations of STO's. 
12 Theoret. chim. Acta (Ber|.) Vol. 14 
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Let us first observe the SLO's describing the three types of C-C bonds. From 
symmetry it follows that b = 1. The value q and the corresponding "occupation" 
numbers, calculated according to (21), are given in the Table 1. It is evident that 
the classical hybrid functions are most appropriate for the description of the C-C 
bond of ethane. 

Table 1. SLO's  (Direct Method) and their "occupation" numbers 

C--C bond (b = 1) C - H  bond 

q nc_ c b q nc_ n 

Acetylene 0.5170 1.974 0.7469 0.6112 1.9980 
Ethylene 0.5320 1.982 0.8415 0.5853 1.9936 
Ethane 0.5511 1.989 0.8766 0.5806 1.9921 

In accordance with the notation introduced in (20) the normalized two-centre 
SLO, describing the C-H bond is denoted: 

t/c-n = q(~Pc + b" q~n). 

The optimum values b and the corresponding "occupation" numbers for the three 
molecules are given in Table 1. It is worth noting that the chosen basis of HO's 
is more advantageous for the description of the C-H bonds and that the rate of 
compatibility for the three molecules runs in the opposite direction than in the 
case of the C-C bonds. 

In [9] has been shown that it is possible to construct very well localized orbitals 
in terms of classical hybrid functions by means of a unitary transformation of the 
molecular orbitals. From these localized orbitals it is possible to get the para- 
meter b as the ratio quotient of the coefficient at the hydrogen orbital and of the 
coefficient at the carbon orbital and to get, therefore, the corresponding SLO's 
in an alternative way. The results obtained in such a way are shown in Table 2 
and it is evident that the differences between the "occupation" numbers in both 
cases are outside the limits of the indicated precision. For the sake of comparison 
we present in Table 2 the parameters "b" and "q", which have the same meaning 
as above but which result from the localized orbitals obtained by means of the 
transformation of SCF MO's [9]. The numerical values of these parameters 
confirm the former statement about the similarity of localized orbitals obtained 
from EHT MO and SCF MO. 

Table 2. SLO's  for the C - H  bonds derived from localized MO's  

SCF EHT 

b q b q nc_n 

Acetylene 0.7322 0.6257 0.7773 0.6010 1.9979 
Ethylene 0.8165 0.5946 0.8618 0.5790 1.9936 
Ethane 0.8510 0.5896 0.8799 0.5796 1.9921 
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The  a p p r o x i m a t i o n  of  the f i rs t -order  dens i ty  ma t r ix  in the form of  the Eq. (6) 
requires  at  least  an a p p r o x i m a t e  o r t h o n o r m a l i t y  of  the SLO's .  I t  is evident  f rom 
Table  3, where  the over lap  integrals  for the  ne ighbour ing  S L O ' s  a re  given, how 
far this  r equ i remen t  is fullfilled for the chosen  basis of  HO's .  

I t  is poss ib le  to  dec ide  whether  the subs t i tu t ion  of  mo lecu l a r  o rb i ta l s  by str ict ly 
local ized orb i ta l s  is a g o o d  a p p r o x i m a t i o n  or  no t  ei ther  by  means  of  the  c ompa r i son  

Table 3. Overlap integrals between the neighbouring SLO's (EHT) 

Sc-H. c-c Sc-n. c-n 

Acetylene 0.1010 - -  
Ethylene 0.1415 0.1474 
Ethane 0.1325 0.1596 

of  ca lcula t ions  for several  phys ica l  quant i t ies  cons ider ing  the co r re spond ing  types  
of  wave funct ions  or  by  means  of  the analysis  of  the f i rs t -order  densi ty  matr ix .  
The  c o m p a r i s o n  of  the to ta l  gross  o rb i t a l  p o p u l a t i o n s  [27] ind ica ted  in Table  4 
gives pa r t i a l  in format ion .  On means  the  hyd rogen  a tomic  orbi ta l ,  q~cn and  ~Occ 
denote  the  ca rbon  h y b r i d  o rb i ta l s  po in t ing  t o w a r d s  the h y d r o g e n  a t o m  and  the 
ne ighbour ing  ca rbon  a tom,  respectively.  

Table 4. Comparison of total gross populations in terms of HO's. Upper row: for SLO's given in the 
second part of Table 2; lower row: for EHT MO's 

n(~o.) n(~oca) n(~r 

Acetylene 0.857 1.143 1.000 
0.839 1.167 0.994 

Ethylene 0.914 1.086 1.000 
0.879 1.119 1.004 

Ethane 0.924 1.076 1.000 
0.882 1.116 1.007 
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